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Abstract. We present a theoretical profile of the Lyman β line of atomic hydrogen perturbed by collisions
with neutral hydrogen atoms and protons. We use a general unified theory in which the electric dipole
moment varies during a collision. A collision-induced satellite appears on Lyman β, correlated to the
B′′B̄ 1Σ+

u−X 1Σ+
g asymptotically forbidden transition of H2. As a consequence, the appearance of the line

wing between Lyman α and Lyman β is shown to be sensitive to the relative abundance of hydrogen ions
and neutral atoms, and thereby to provide a temperature diagnostic for stellar atmospheres and laboratory
plasmas.

PACS. 32.70.Jz Line shapes, widths, and shifts – 52.25.Qt Emission, absorption,
and scattering of ultraviolet radiation – 95.30.Dr Atomic processes and interactions

1 Introduction

In [1] Allard et al. derived a classical path expression for a
pressure-broadened atomic spectral line shape that allows
for a radiative electric dipole transition moment which
depends on the position of the perturbers. This factor is
not included in the more usual approximation of Anderson
and Talman [2] and Baranger [3,4]. We used this theory to
study the influence of the variation of the dipole moment
on the satellites present in the far wing profiles of the
Lyman series lines of atomic hydrogen seen in stars and
in laboratory plasmas.

Satellite features at 1600 Å and 1405 Å in the Lyman α
wing associated with free-free quasi-molecular transitions
of H2 and H+

2 have been observed in ultraviolet (UV) spec-
tra of certain stars obtained with the International Ultra-
violet Explorer (IUE) and the Hubble Space Telescope
(HST) [5–8]. The stars which show Lyman α satellites are
DA white dwarfs, old Horizontal Branch stars of spec-
tral type A, and the λ Bootis stars. The last two have
the distinctive property of poor metal content, that is,
low abundances of elements other than H and He. Satel-
lites also have been observed in the laboratory spectra of
laser-produced hydrogen plasmas [9, 10].
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Satellite features in hydrogen lines are not limited to
Lyman α, which is the only Lyman-series line accessible
to IUE as well as HST. Observations with HUT (Hopkins
Ultraviolet Telescope) and with ORFEUS (Orbiting Re-
trievable Far and Extreme Ultraviolet Spectrograph) of
Lyman β of DA white dwarfs with Teff close to 20 000 K
have revealed a line shape very different from the expected
simple Stark broadening, with line satellites near 1078 and
1060 Å [11,12]. The satellites in the red wing of Lyman β
are in the 905 to 1187 Å spectral region covered by the
Far Ultraviolet Spectroscopic Explorer (FUSE) launched
in June 1999. Furthermore, Lyman β profiles are also the
subject of an ongoing study of the far ultraviolet spectrum
of dense hydrogen plasmas. The strengths of these satel-
lite features and indeed the entire shape of wings in the
Lyman series are very sensitive to the degree of ionization
in the stellar atmosphere and laboratory plasmas, because
that determines the relative importance of broadening by
ion and neutral collisions.

In a previous work [13] we presented theoretical pro-
files of Lyman β perturbed solely by protons. The calcula-
tions were based on the accurate theoretical H+

2 molecular
potentials of Madsen and Peek [14] to describe the inter-
action between radiator and perturber, and dipole transi-
tion moments of Ramaker and Peek [15]. The line profiles
were included as a source of opacity in model atmospheres
for hot white dwarfs, and the predicted spectra compared
very well with the observed ORFEUS spectra [12].
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The very recent ab initio calculations of Drira [16] of
electronic transition moments for excited states of the
H2 molecule and very accurate molecular potentials of
Schmelcher [17, 18] now allow us to compute Lyman β
profiles simultaneously perturbed by neutral atomic hy-
drogen and by protons. The aim of our paper is to
point out a collision-induced satellite correlated to the
B′′B̄ 1Σ+

u −X 1Σ+
g asymptotically forbidden transition of

H2. We show that the shape of the wing in the region be-
tween Lyman β and Lyman α is particularly sensitive to
the relative abundance of the neutral and ion perturbers
responsible for the broadening of the lines.

2 Theory

The classical path theory for the shape of pressure-
broadened atomic spectral lines which takes into account
the variation of the electric dipole moment during a col-
lision is only briefly outlined here. The theory has been
described in detail in [1]. Our approach is based on the
quantum theory of spectral line shapes of Baranger [3, 4]
developed in an adiabatic representation to include the
degeneracy of atomic levels [19–21].

2.1 General expression for the spectrum
in an adiabatic representation

The spectrum I(ω) can be written as the Fourier trans-
form of the dipole autocorrelation function Φ(s),

I(ω) =
1
π

Re
∫ +∞

0

Φ(s)e−iωsds. (1)

Here,

Φ(s) = Tr ρD†e
isH
~ De

−isH
~ (2)

= 〈D†(0)D(s)〉 (3)

is the autocorrelation function of D(s), the dipole moment
of the radiator in the Heisenberg representation (we use
bold notation for operators) [22]. H is the total Hamilto-
nian

H = Tnucl + Telec + V (x,R), (4)

where Tnucl and Telec are sums of nuclear and electronic
kinetic energy operators respectively, and V (x,R) is the
interaction between particles. Here x denotes collectively
the set of electronic coordinates (position and spin) plus
spin coordinates of the nuclei, while R denotes the set
of position coordinates of the nuclei. We assume that the
radiating atom is immersed in a perturber bath in thermal
equilibrium. The density matrix ρ is

ρ ≡ e−βH

Tr e−βH
, (5)

where β is the inverse temperature (1/kT ).

We use the notation

〈( )〉 ≡ Tr ρ( ) , (6)

where Tr denotes the trace operation.
The adiabatic or Born-Oppenheimer representation

comprises expanding states of the gas in terms of elec-
tronic states χe(x;R) corresponding to frozen nuclear con-
figurations. In the Schrödinger equation

(Telec + V (x,R))χe(x;R) = Helec(R)χe(x;R) (7)
= Ee(R)χe(x;R). (8)

R appears as a parameter, and the eigenenergies Ee(R)
play the role of potential energies for the nuclei. Any total
wave function Ψ(x,R) can be expanded as

Ψ(x,R) =
∑
e

ψe(R)χe(x;R). (9)

As the nuclei get far from each other, which we denote
by R→∞, the electronic energies Ee(R) tend to asymp-
totic values E∞e which are sums of individual atomic en-
ergies. Since atomic states are usually degenerate, there
are in general several different energy surfaces which tend
to a same asymptotic energy as R→∞. We will consider
specifically a single radiating atom, the radiator, immersed
in a gas of optically inactive atoms, the perturbers. For a
transition α = (i, f) from initial state i to final state f ,
we have R-dependent frequencies

ωe′e(R) ≡ (Ee′(R)−Ee(R))/~, e ∈ εi, e′ ∈ εf (10)

which tend to the isolated radiator frequency

ωα ≡ ωfi ≡ (E∞f −E∞i )/~ (11)

as the perturbers get sufficiently far from the radiator:

ωe′e(R)→ ωfi as R→∞, e ∈ εi, e′ ∈ εf . (12)

Let us introduce projectors Pe which select the eth adia-
batic component of any Ψ(x,R) according to [20]

PeΨ(x,R) = ψe(R)χe(x;R). (13)

We write the dipole moment as a sum over transitions

D =
∑
α

Dα, (14)

Dα ≡
∑
e,e′

(α) Pe′DPe. (15)

In the Heisenberg representation

Dα(t) ≡
∑
e,e′

(α) e
itH
~ Pe′DPee

−itH
~ , (16)

≡
∑
e,e′

(α) De′e(t). (17)
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The sum
∑(α)
e,e′ is over all pairs (e, e′) such that ωe′,e(R)→

ωα as R → ∞. Thus Dα connects all pairs of adiabatic
states whose electronic energy differences become equal to
ωα as R→∞. In the absence of perturbers, Dα would be
the component of D responsible for the radiative transi-
tions of frequency ωα. We note that the projection oper-
ators account for the weighting factors discussed in refer-
ence [21].

Introducing the expansion equation (14) for D into the
expression equation (3) for Φ(s), we obtain

Φ(s) =
∑
α,β

Φα,β(s) (18)

where

Φα,β(s) = Tr ρD†α e
isH
~ Dβ e

−isH
~ (19)

= 〈D†α(0) Dβ(s) 〉. (20)

The line shape is then

I(ω) =
∑
α,β

Iα,β(ω). (21)

The terms Iα,β(ω), α 6= β, represent interference between
different spectral lines [4]. When these interference terms
are neglected, we get

I(ω) =
∑
α

Iα(ω) (22)

and

Φ(s) =
∑
α

Φα(s) (23)

where

Φα(s) = 〈D†α(0) Dα(s) 〉. (24)

The time dependence of Φα(s) is determined by Dα(s),
the part of the dipole moment which, in the absence of
perturbers, oscillates at the frequency ωα. Let us now de-
note

dα(s) ≡ Dα(s)e−iωαs (25)

wherein the free evolution e−iωαs is factored out.
For an isolated line, such as Lyman α, we have shown

(Allard et al. [1]) that the normalized line shape Jα(∆ω),
in the uncorrelated perturbers approximation, is given by

Jα(∆ω) = FT[engα(s)]. (26)

In the classical path approximation, where we assume that
the perturber follows a rectilinear trajectory at a single
mean velocity v̄, we get from [1, 21] that gα(s) can be
written as

gα(s) =
1∑

e,e′
(α) |dee′ |2

×
∑
e,e′

(α)

∫ +∞

0

2πρdρ
∫ +∞

−∞
dx d̃ee′ [ r(0) ]

× [ e
i
~
R
s
0 dt Ve′e[ r(t) ] d̃∗ee′ [ r(s) ] − d̃ee′ [ r(0) ] ]. (27)

The separation of the radiator and perturber is

r(t) = [ ρ2 + (x+ v̄t)2 ]1/2

with ρ the impact parameter of the perturber trajectory
and x is the position of the perturber along its trajectory
at time t = 0. The total line strength of the transition is∑
e,e′

(α) |dee′ |2. The potential energy for a state e is

Ve[r(t)] = Ee[r(t)]−E∞e ; (28)

the difference potential is

Ve′e[r(t)] = Ve′ [r(t)] − Ve[r(t)] ; (29)

and we defined a modulated dipole [1]

d̃ee′ [r(t)] = dee′ [r(t)]e−
β
2 Ve[r(t)] , (30)

where we denoted

dee′(r) = 〈χe(r)|d|χe′ (r)〉 . (31)

In the above, we neglected the influence of the po-
tentials Ve(r) and Ve′(r) on the perturber trajectories,
which remain straight lines. Although we should drop
the Boltzmann factor e−βVe(r) for consistency with our
straight trajectory approximation, by keeping it we im-
prove the result in the wings. Note that over regions where
Ve(r) < 0, the factor e−βVe(r) accounts for bound states
of the radiator-perturber pair, but in a classical approxi-
mation wherein the discrete bound states are replaced by
a continuum; thus any band structure is smeared out.

3 Theoretical analysis

3.1 Formation of line satellites

Close collisions between a radiating atom and a perturber
are responsible for transient quasi-molecules which may
lead to the appearance of satellite features in the wing of
an atomic line profile.

When the difference ∆V (R) between the upper and
lower interatomic potentials for a given transition goes
through an extremum, a relatively wider range of in-
teratomic distances contribute to the same spectral fre-
quency, resulting in an enhancement, or satellite, in the
line wing. The unified theory [2, 22] predicts that there
will be satellites centered periodically at frequencies cor-
responding to the extrema of the difference potential be-
tween the upper and lower states, ∆ω = k∆Vext, (k =
1, 2, ...) [23–25]. Here ∆ω is the frequency difference be-
tween the center of the unperturbed spectral line and the
satellite feature, measured for convenience in the same
units as the potential energy difference. This series of
satellites is due to many-body interactions.
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Fig. 1. Difference potential energies expressed in cm−1 for the
singlet states of H2 contributing to Lyman β.

3.2 Diatomic potentials

The adiabatic interaction of the neutral hydrogen atom
with a proton or another hydrogen atom is described by
potential energies Ve(R) for each electronic state of the
H+

2 or H2 molecule (R denotes the internuclear distance
between the radiator and the perturber). For H–H+ col-
lisions we have used the potentials of H+

2 calculated by
Madsen and Peek [14]. For H–H collisions we have used
the potentials of H2 calculated by Schmelcher [17].

In Figure 1 we have plotted the H2 potential differ-
ences ∆V (R) for the singlet states which contribute to
Lyman β. We have used letters here to label the states.
B3 is the well known B′′B̄ 1Σ+

u state. At small internu-
clear separation, R, the state correlates with the B′′ 1Σ+

u
state, the third 1Σ+

u state of the Rydberg series. At larger
internuclear separation the state has an ionic character
until R = 19 Å where the potential energy curve of the
H+ + H− (1s)2 state crosses the H(n = 1) + H(n = 3)
energy levels, because of an avoid crossing B̄ looses its
ionic character. Dabrowski and Herzberg [26] predicted
the existence of the B̄, the first calculations were done
by Kolos [27, 28]. More recent calculations are reported
in [18,29].

We use B4 and B5 respectively to label the 4 1Σ+
u and

5 1Σ+
u states, and V and D to label the 3 1Πu and 2 1Πu

states.
Each difference potential exhibits at least one ex-

tremum which, in principle, leads to a corresponding satel-
lite feature in the wing of Lyman β (see Sect. 3.1). The
present approach now allows us also to take into ac-
count the asymptotically forbidden transitions of quasi-
molecular hydrogen which dissociate into (1s, 3s) and
(1s, 3d) atoms. The satellite amplitude depends on the
value of the dipole moment through the region of the
potential extremum responsible of the satellite and on
the position of this extremum. We have shown [1, 13, 30]
that a large enhancement in the amplitude of a spec-
tral line satellite occurs whenever the dipole moment in-
creases through the region of internuclear distance where
the satellite is formed.

The potential differences of the B3–X and B4–X tran-
sitions exhibit double wells. The maximum at 3.0 Å of the
B3–X potential and minimum of the B4–X potential are
due to an avoided-crossing.

The most significant characteristic of Figure 1 is the
existence of the deep outer well at 6 Å of the B3-X poten-
tial. The ionic interaction decays slowly making the po-
tential energy difference very broad compared to the very
steep wells of the other transitions. This is very important
as the position of the extremum and the functional depen-
dence of the potential difference on internuclear separation
determine the amplitude and shape of the satellites [21].

3.3 Electronic transition dipole moments

The dipole moment taken between the initial and final
states of a radiative transition determines the transition
probability, but for two atoms in collision, the moment
depends on their separation. This modifies relative contri-
butions to the profile along the collision trajectory. Dipole
moments for H+

2 and H2, calculated as a function of inter-
nuclear distance respectively by Ramaker and Peek [15]
and by Drira [16], were used for the transitions contribut-
ing to Lyman α and Lyman β. For Lyman β, the four com-
ponents which correspond to 1s−3p atomic transitions are
dipole allowed [16]: the two singlet B4–X and D–X tran-
sitions, and the two triplet 43Σ+

g –3Σ+
u and 2 3Πg–3Σ+

u

transitions.
If electronic states i and f of an isolated radiator are

not connected by the dipole moment operator, that is
if Dif (R → ∞) = 0, allowed radiative transitions can-
not occur between these two states. This happens for the
other transitions which correspond to 1s−3s and 1s−3d
atomic transitions. Although these transitions should not
contribute to the unperturbed line profile, Dif (R) may
differ from zero when a perturber passes close to the radi-
ator. In this instance radiative transitions are induced by
collisions, but not at the unperturbed line frequency.

It often arises that an extremum in the potential dif-
ference occurs when the final (or initial) potential en-
ergy curve exhibits an avoided crossing, the corresponding
wavefunctions exchange their characteristics and the ra-
diative dipole transition moment varies dramatically with
R. This is exactly what happens for the B3–X transition.
To point out the importance of variation of dipole moment
on the formation of a collision-induced (CI) satellite, we
have displayed in Figure 2 D(R) together with the corre-
sponding ∆V (R) for the B3–X asymptotically forbidden
transition. The dipole transition is extremely small for the
isolated radiating atom (R → ∞) but it goes through a
maximum at the value of R where the avoid-crossing oc-
curs and remains quite important at the internuclear dis-
tance where the potential difference of the outer well goes
through a minimum.

In such a case we expect a contribution from this tran-
sition in the wing and the formation of a CI line satellite,
if it is not smeared out by larger dipole-allowed contribu-
tions.
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Fig. 2. Difference potential energy ∆V in cm−1 and the corre-
sponding D(R) in atomic units for the dipole forbidden B3–X
transition which gives the CI satellite of Lyman β.

4 Lyman β profile

The Lyman profiles and satellites shown here are calcu-
lated at the low densities met in the atmospheres of stars.
The typical particle densities from 1015 to 1017 cm−3 al-
lows us to use an expansion of the autocorrelation function
in powers of density as described in [21, 31]. Line profiles
are normalized so that over ω they integrate to 1.

4.1 Collisional profile perturbed by neutral H

We will consider the two following mechanisms which con-
tribute to the Lyman β wing.

– The far wing of allowed dipole lines, due to the free-free
transition in a pair of colliding atoms.

– The collision-induced absorption due to the free-free
transition involving the transient dipole moment ex-
isting during a binary collision.

The line profile calculation shown Figure 3 has been
done at a temperature of 10 000 K for a perturber density
of 1016 cm−3 of neutral hydrogen. The only line feature is
a broad CI satellite situated at 1150 Å in the far wing, due
to the B3–X dipole forbidden transition. Normally such an
effect would be overshadowed by the allowed transition
wing, but in this case there is no large contribution of the
dipole allowed transitions in this region, as can be easily
predicted by the examination of Figure 1. The extrema of
the allowed B4–X and D–X transitions occur for very short
distances, and are much smaller compared to the position
and depth of the outer well in the B3–X transition (see
Sects. 3.1 and 3.2).

The collision-induced absorption depends on the inter-
nuclear separation and produces very broad spectral lines
with a characteristic width of the order of the inverse of
the duration of the close collision. It is strongly depen-
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Fig. 3. Line profile of Lyman β perturbed by neutral hydrogen
and protons. The dashed line (− − −) shows only the contri-
bution from neutral perturbers.

dent on
– the temperature;
– the amplitude of the dipole forRmin when the potential

difference presents a minimum.
This emphasizes the importance of the accuracy of

both the potential energies and the dipole moments for
the line shape calculations.

Oscillatory structures appear near the 1150 Å satellite
as they appear between the line and the 1600 Å satellite
in both theory and experiment [1]. These oscillations were
predicted by Royer [32] and Sando et al. [33, 34].

4.2 Simultaneous perturbations by H and H+

The complete Lyman β profile perturbed by collisions with
neutral hydrogen and protons is shown in Figure 3. We
notice that the collision-induced H–H satellite is much
broader than the allowed H–H+ satellite since the dipole
moment differs from zero only over a short range of in-
ternuclear distances (see Sect. 4.1). The CI satellite of
Lyman β is quite far from the unperturbed Lyman β line
center, actually closer to the Lyman α line. It is therefore
necessary to take into proper account the total contri-
bution of both the Lyman α and Lyman β wings of H
perturbed simultaneously by neutrals and protons and to
study the variation of this part of the Lyman series with
the relative density of ionized and neutral atoms.

In [1] we evaluated both the Lyman α and Lyman β
wings of H perturbed by protons. However, we neglected
interference terms between the two lines. Equation (51)
of [1], which gives the profile for a pair of lines such as
Lyman α and β, is

I(ω) = φ(0)
α enfα(0)Jα(ω − ωα) + φ

(0)
β enfβ(0)Jβ(ω − ωβ).

The perturbed line strength φ
(0)
α enfα(0) differs from the

free line strength φ(0)
α by the factor enfα(0). This density-

dependent factor expresses the fact that the total intensity
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ion density (1× 1016 cm−3).

radiated increases or decreases when the dipole moment
is increased or decreased, on average, by the proximity of
perturbers. Because of the low densities we consider, we
have neglected this factor here.

We show the sum of the profiles of Lyman α and
Lyman β in Figure 4. We can see that a ratio of 5 be-
tween the neutral and proton density is enough to make
the CI satellite appear in the far wing. The CI satellite ap-
pearance is then very sensitive to the degree of ionization
and may be used as a temperature diagnostic.

5 Conclusions

In the case of Lyman α and the H–H+ Lyman β satellites,
the potential shape played a dominant role in the large
difference in the broadening of the quasi-molecular fea-
tures [30]. The width of the collision-induced absorption
is determined, for the most part, by the short range over
which the corresponding transition dipole moment is sig-
nificant. In the CI satellite, it is the dipole moment which
is very important and which is responsible of the shape of
the satellite, the observation of such a satellite would be
a test of the accuracy of the dipole moment calculation.
Satellites due to allowed and forbidden transitions depend
linearly on density. The CI satellite is very sensitive to the
temperature of the absorption, and it may also be used as
a diagnostic tool for temperature. We emphasize that the
effect of finite collision duration does play a role in the
shape of the far wing. The present calculations are done
in an adiabatic approximation using a rectilinear trajec-
tory. This should affect slightly the shape of the satellite,
although no great error is expected. We are developing
methods to include trajectory effects in the evaluation of
the line shape.

The computations of dipole transition moments were per-
formed on the CRAY of the computer center IDRIS. The work
at the University of Louisville is supported by a grant from the
U.S. Department of Energy, Division of Chemical Sciences, Of-
fice of Basic Energy Sciences, Office of Energy Research.
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